Skip to main content
Log in

Experimental investigation of slip velocity and settling distribution of micro-particles in converging–diverging microchannel

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

An experimental test bed based on single particle tracking techniques is employed in order to investigate the velocity domain, slip velocity, and settling distribution of micro-particles in low-Reynolds number poiseuille flow in converging–diverging microchannel. Three-dimensional velocity domain of particles are studied in the presence of walls and compared with the particle-free fluid. The results show that the velocity of particles moving near the side walls of microchannel decreases about 30 % compared to those moving at the centerline. Furthermore, the effects of converging–diverging geometry on sedimentation of micro-particles are considered. The results show an average decrease of about 40 % in sedimentation of particles among the total particles in converging–diverging channels which is one of the main advantages of these channels in comparison with the straight types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Channel cross section (µm2)

a :

Distance of particle center from the side wall (µm)

D :

Particle diameter (µm)

d :

Distance of particle center from the bottom wall (µm)

g :

Gravitational acceleration (ms−2)

H :

Channel height (µm)

p :

Pressure gradient (pa)

Q :

Flow rate (µl h−1)

RMS :

Root mean square

u :

Fluid velocity (µm s−1)

v :

Particle velocity (µm s−1)

w :

Channel width (µm)

μ :

Viscosity of liquid (Pa s)

ρ :

Density (g cm −3)

α :

Percentage of velocity variation

c :

Centerline

Cs:

Center of straight channel

Ct:

Center in the throat

f :

Fluid

g :

Gravity

gl :

Glycerol

h :

Hydraulic diameter

max :

Maximum

p :

Particle

s :

Straight channel

T:

Throat

References

  • Ai Y, Joo SW, Jiang Y, Xuan X, Qian SH (2009) Pressure-driven transport of particles through a converging–diverging microchannel. Biomicrofluidics 3(2):022404

    Article  Google Scholar 

  • Andersson H, van der Wijngaart W, Nilsson P, Enoksson P, Stemme G (2001) A valve-less diffuser micropump for microfluidic analytical systems. Sens Actuators B Chemical 72(3):259–265

    Article  Google Scholar 

  • Ashwood A, Hogen SJ, Vanden Rodarte MA, Kopplin CR, Rodríguez DJ, Hurlburt ET, Shedd TA (2015) A multiphase, micro-scale PIV measurement technique for liquid film velocity measurements in annular two-phase flow. Int J Multiph Flow 68:27–39

    Article  Google Scholar 

  • Cox R, Mason S (1971) Suspended particles in fluid flow through tubes. Annu Rev Fluid Mech 3(1):291–316

    Article  MATH  Google Scholar 

  • Faxen H (1923) Die Bewegung einer starren Kugel längs der Achse eines mit zäher Flüssigkeit gefüllten Rohres. Arkiv för Matematik, Astronomi och Fysik 17:1–28

    MATH  Google Scholar 

  • Ganatos P, Pfeffer R, Weinbaum S (1980) A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 2. Parallel motion. J Fluid Mech 99(04):755–783

    Article  MATH  Google Scholar 

  • Ganatos P, Weinbaum S, Pfeffer R (1982) Gravitational and zero-drag motion of a sphere of arbitrary size in an inclined channel at low Reynolds number. J Fluid Mech 124:27–43

    Article  MATH  Google Scholar 

  • Good BT, Bowman CN, Davis RH (2004) Modeling and verification of fluid-responsive polymer pumps for microfluidic systems. Chem Eng Sci 59(24):5967–5974

    Article  Google Scholar 

  • Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics—a review. J Micromech Microeng 3(4):168

    Article  Google Scholar 

  • Happel J, Brenner H (1983) Low Reynolds number hydrodynamics: with special applications to particulate media, vol 1. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Keramati H, Saidi MH, Zabetian M (2015) Stabilization of the suspension of zirconia microparticle using the nanoparticle halos mechanism: zeta potential effect. J Dispers Sci Technol 37(01):6–13

    Article  Google Scholar 

  • Lorentz HA (1896) A general theorem concerning the motion of a viscous fluid and a few consequences derived from it. Versl Kon Akad Wetensch Amsterdam 5:168–174

    Google Scholar 

  • Nikoubashman A, Likos CN, Kahl G (2013) Computer simulations of colloidal particles under flow in microfluidic channels. Soft Matter 9(9):2603–2613

    Article  Google Scholar 

  • Puccetti G, Pulvirenti B, Morini GL (2014) Experimental determination of the 2D velocity laminar profile in glass microchannels using μPIV. Energy Procedia 45:538–547

    Article  Google Scholar 

  • Razaghi R, Saidi MH (2016a) Transportation and settling distribution of microparticles in low-reynolds-number poiseuille flow in microchannel. J Dispersion Sci Technol 37(4):582–594

    Article  Google Scholar 

  • Razaghi R, Saidi MH (2016b) Experimental investigation of drag and lift forces on microparticles in low Reynolds number poiseuille flow in microchannel. J Dispers Sci Technol 37(12):1767–1777

    Article  Google Scholar 

  • Silva G, Leal N, Semiao V (2008) Micro-PIV and CFD characterization of flows in a microchannel: velocity profiles, surface roughness and Poiseuille numbers. Int J Heat Fluid Flow 29(4):1211–1220

    Article  Google Scholar 

  • Staben ME, Zinchenko AZ, Davis RH (2003) Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow. Phys Fluids (1994–present) 15(6):1711–1733

    Article  MATH  Google Scholar 

  • Terray A, Oakey J, Marr DW (2002) Microfluidic control using colloidal devices. Science 296(5574):1841–1844

    Article  Google Scholar 

  • Wang H, Wang Y (2009) Measurement of water flow rate in microchannels based on the microfluidic particle image velocimetry. Measurement 42(1):119–126

    Article  Google Scholar 

  • White FM, Corfield I (2006) Viscous fluid flow, vol 3. McGraw-Hill, New York

    Google Scholar 

  • Xuan X, Li D (2005) Particle motions in low-Reynolds number pressure-driven flows through converging–diverging microchannels. J Micromech Microeng 16(1):62

    Article  Google Scholar 

  • You C, Li GH, Qi HY, Xu XC (2004) Motion of micro-particles in channel flow. Atmos Environ 38(11):1559–1565

    Article  Google Scholar 

  • Zabetian M, Saidi MS, Shafii MB, Saidi MH (2013) Separation of microparticles suspended in a minichannel using laser radiation pressure. Appl Opt 52(20):4950–4958

    Article  Google Scholar 

  • Zabetian M, Shafii MB, Saidi MH, Saidi MS, Rohani R (2014) A new experimental approach to investigate the induced force and velocity fields on a particulate manipulation mechanism. Scientia Iranica. Trans B Mech Eng 21(2):414

    Google Scholar 

  • Zivkovic V, Zerna P, Alwahabi ZT, Biggs MJ (2013) A pressure drop correlation for low Reynolds number Newtonian flows through a rectangular orifice in a similarly shaped micro-channel. Chem Eng Res Des 91(1):1–6

    Article  Google Scholar 

Download references

Acknowledgments

The experiments were conducted in the research laboratory supervised by Professor M. H. Saidi at Center of Excellence in Energy Conversion (CEEC) of Sharif University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hassan Saidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirinzadeh, F., Saidi, M.H. & Davari, A. Experimental investigation of slip velocity and settling distribution of micro-particles in converging–diverging microchannel. Microsyst Technol 23, 3361–3370 (2017). https://doi.org/10.1007/s00542-016-3139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3139-1

Keywords

Navigation